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FOREWORD

This research was conducted by the Engineering Department, Cambridge
University, under contract number ARDSG-27-82, from the European Research
Office, London. The studies were sponsored by the U.S. Army Construction
Engineering Research Laboratory (USA-CERL) for the Office of the Chief of
Engineers (OCE). The work was conducted under Project 4A161102AT23, "Basic
Research in Military Construction"; Task A, "Base/Facility Development";
and Work Unit 022, "Mechanical Properties of Polymers," of which it is one
of several sub-tasks in the research. The overall research is designed to
provide a better understanding of the micromechanics of deformation and • "
rupture of polymer chains so that bulk material performance is better -

understood and acceptable design values for polymer-based materials can be
provided to engineer and architect designers.

The USA-CERL Principal Investigator is Mr. Alvin Smith of the Engineer-
ing and Materials Division (EM). Dr. Robert Quattrone is Chief, USA-CERL-EM. .'-

COL Paul J. Theuer is Commander and Director of CERL, and Dr. L. R.
Shaffer is Technical Director.
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PART I DEFORMATION-MODE MAPS FOR POLYMER-FOAMS

,. 
. ..

The mechanical properties (elastic, plastic, creep and fracture)
of cellular solids or foams are related to the properties of the cell

'A wall material and to the cell geometry. The properties are well
,. described by simple formulae. Such materials occur widely in nature

and have many potential engineering applications.

I. THE STRUCTURE OF CELLULAR SOLIDS

Making foams is not difficult. Most polymers can be foamed

easily, and techniques exist for doing the same thing with ceramics

and glasses. Even metals can be formed into foams.

Some foams are almost isotropic, meaning that their structure

and their properties have no directionality. Others are anisotropic:

their structure is axisyimetric (like cork) or orthotropic (like

wood); and their properties reflect this. Man-made foams tend to be

almost isotropic. Natural cellular solids are rarely so; a single

piece of cork or bone differs in strength and stiffness by a factor

of 2 or more along two directions at right angles.

There is a second distinction. Some foams have closed cells

(like a soap foam): the solid material is distributed in little

plates which form the faces of the cells. Others have open cells

(liAe a sponge): the solid material is distributed in little columns

or beams which form the cell edges. The mechanical properties reflect,

to some extent, this distribution. In reality, most man-made foams,

even those with closed cell faces, behave like open-celled foams

because surface tension draws much of the solid material into the

cell edges during manufacture.

The most important aspect of the structure is the rel Ztive
density, O/ s, where o is the density of the foam and s that of

the solid of which the foam is made. The mechanical properties of .
foams depend, above all else, on the relative density. It can vary

from I to as little as 0.01 The familiar foamed plastics used

for packaging have a relative density of around 0.05 "t.

9 %1'4. 
'
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2. DEFORMATION MECHANISMS AND IDEALISED FOAM STRUCTURES

(1-4)
Detailed studies of model foams have identified four

deformation modes: linear elasticity, non-linear elasticity, plastic

- collapse and various sorts of fracture. The studies used 2-dimensional

hexagonal cells, like those in the diagrams shown later in this paper.

A hexagonal networic is a good starting point because the modes of

deformation correspond to those of 3-dimensional foams, yet the

geometry is simple enough that a complete analysis is practical. The

understanding derived from the 2-dimensional models has provided the

"" foundation for the analysis of the more complicated problem presented

by real, 3-dimensional foams (4-0) given below.

In the analysis, the 3-dimensional structure of the foam must be

included. It is idealised, without loss of physically important

features, in the models shown in Fig.I. The open-cell foam is modelled

as a cubic array of members of length Z and square section of side t.

Adjoining cells are staggered so that members meet at mid-points. The

relative density of the cell, p/p (where p is the density of the
.- ,

A, cell wall material) is then given by:

"'-- "t) (1):
p 2

and the second moment of the section of a member (which we need later)

is given by:

-L- (2)
• ..-. 12

A closed-cell foam is modelled similarly. The square struts are

replaced by square plates of side Z and thickness t Adjoining

cells are again staggered. Then:

-P- Is z"''- (3)

-- As pointed out earlier, most foams behave more like the first model,,-

because surface tension concentrates material into the cell edges

during their manufacture. We will use it as the basis of the

calculations given below, which treat isotropic foams. Refinements,

results for the second model and the generalisations to non-isotropic

foams are given elsewhere (2' 10) Symbols are defined in Table I.

.< ..10
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3. MECHANICAL PROPERTIES

"S' When a foam is compressed, the stress-strain curve shows 3 regions

(Fig.2). At low strains, the foam deforms in a linear-elastic way;

there is then a plateau of deformation at almost constant stress; and

finally there is a region of densification as the cell walls crush to-

gether. The extent of each region depends on relative density /ps

Elastic foams, plastic foams, and even brittle foams all have 3-part

stress-strain curves like this, though the mechanism causing the plateau

is different in each case.

The deformation of a regular, 2-dimensional foam like that sketched

in Fig.3, can be analysed with precision. It is far more difficult to

do the same analysis for a 3-dimensional foam, because the response is

an average of that of cell walls of random orientation in space, and

%,%: with a distribution of length X and section t2  It is better to use

the dimensional argument given below, and then rely on experiment to

determine a single, unknown, constant of proportionality. This method,

which we have used to analyse many properties of foams, will become

clearer as it is applied in the following sections.

3.1 Linear EZastic Properties

When a foam is loaded, the cells walls at first bend
(2 ,3,7'9'10)

Fig.3 shows this bending for the 2-dimensional model; the same bending

deformation occurs in 3-dimensional foams. A force F , applied as

shown, causes the non-vertical beams to deflect by 6 , which is

calculated from simple beam theory as:
* 5C F 13

If= 12 Es I (4)

Here C1 is a resolution factor which depends only on the cell geometry

and E is the Young's modulus of the solid cell wall material. For
open cell foam of Fig.I(a) the stress is proportional to F/ 2 , the

strain to 6/t . The second moment of area, I, is proportional to t.

(eqn. 2) giving:

E -E -

Using eqn.(1) for the density, we find:

E 2  (5)

where C2  is a constant. The shear modulus scales in a similar way,

,11
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because shear deformation in a foam also causes simple bending of the

cell walls (2)

Data are compared with eqn.(5) in Fig.4. It shows Young's moduli

for polymeric and ceramic foams plotted against Q/P on logarithmic

scales. The full line is a plot of eqn.(5) with C2  I ; it gives a

good description of a wide range of materials and densities. Note that

the modulus falls rapidly as the volume of void space in the foam

increases. The range of moduli practically available by foaming is

4
large: it spans a factor of 10. The modulus is important in the

design of load-bearing structures which incorporate foams (sandwich

panels for example).

3.2 Non-Linear Elastic Behaviour

Linear elasticity, of course, is limited to small strains,

typically 5% in compression, rather more in tension. Elastomeric

foams can be compressed far beyond this point. The deformation is still

recoverable (and thus elastic) but is non-linear; it is caused by the

elastic buckling of the columns or plates which make up the cell edges

or walls (2'5'6'1 0 ) as shown in Fig.5, giving the plateau of the stress-

strain curve (Fig.2). It is exploited in cushions and packaging to

give a restoring force (which we now calculate) which is independent of

displacement.

The critical load at which a column of length Z , Young's modulus

E and second moment of area I buckles is given by Euler's formula:
s

F- n2 V2 E I (6
F r M (6) " '
cr 9,25

The constant n2 describes the degree of constraint at the ends of the

column. If this load is reached for a layer of cells spanning the

section, they will buckle, initiating the elastic collapse of the foam.

For the 3-dimensional open-cell foam of Fig.I, the stress a* atel
which this occurs is proportional to For/L 2 , so that:/Z2

ElI
ae* W n2 1 2.. s

Using eqns.(1) and (2) we obtain:

Several authors (3'9'14'19'2 0 ) studying the collapse of rigid foams
sought to interpret their results as elastic buckling. Their
calculations are in the spirit of that given here, but are
inappropriate to the materials they studied.

12 ' "•1
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el (7
E% 5 c 3 ( )( 7 ) ..

valid for relative densities below 0.3 because, at higher densities,

the cell walls are too short and stocky to buckle.

. Data for a* for elastomeric foams are compared with eqn.(7)
el

in Fig.6. They are well fitted by the equation with C3 - 0.05

*.. Like the modulus, the elastic collapse stress spans a wide range: for

a given material, a range of 104 is accessible. This is important

for the design of cushions, padding and packaging.

3.3 Plastic Yielding

Cellular materials can collapse by other mechanisms. If the cell-

wall material is plastic (as are metals and many polymers) then the foam
as a whole shows plastic behaviour. It is exploited in crash barriers

and energy absorbing systems.

Plastic collapse occurs when the moment exerted on the cell walls

by the force F exceeds the fully plastic moment, creating plastic
hn (2,10,2,22) as shown in Fig.7. For a beam of square section of,! , hinges

side t , the fully plastic moment is:

a4-± t3  (8)
p 4 y

If a force F acts with a component normal to a beam of length 9 the

maximum bending moment is proportional to FZ . The stress on the foam,

as before, is proportional to Ff/ 2 . Combining these results we find

the plastic collapse stress of the foam to be:

M

9. 3

Using eqn.(1) we obtain:

' 4 -) (9)
a4

Data for the plastic deformation and for the plastic indentation

of foams (discussed next) are plotted in Fig.8. They are well fitted

by eqn.(9) with C4 - 0.3 for relative densities of less than . (at

higher densities the cell edges are too short and stocky to bend

plastically). The plastic collapse stress can be "tailored", by choosing

a foam of the right density, over a range of 103 . It is of primary

importance in the design of crash padding and energy-absorbing foams.

13
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3.4 Plastic rndentation

Unlike dense solids, which are incompressible when deformed

plastically to large strains, foams change their volume when

compressed. The cells of the foam collapse as the foam is squeezed,

so that axial compression produces almost no lateral spreading.

(Poisson's ratio for the plastic compression of low density foam is,

typically, 0.04 (",10,24,25) Such foams yield plastically under a

multiaxial state of stress when the maximum principal stress, not the

octahedral shear stress, reaches the critical value a* calculated in
p1

the last section.

Because of this, the indentation hardness of a foam is lower than

that of a dense solid of the same yield stress: elements of the foam,

compressed beneath the indenter, do not expand, and so are not constrained

by the surrounding material in the same way that elements in a dense
(16)

solid are. An analysis of the problem shows that, for relative

densities less than about 0.3 , the intentation pressure, or "hardness"

H of the foam is simply:

R (10)
- p1

(instead of the result H = 3c for a dense solid). Two experimental
y

studies 16'24  confirm this result. The data from the second study are

included in Fig.8.

3.5 The Crushing Strwngth

Brittle foams (ceramics, and certain rigid polymers) collapse by
yet other mchanisms: brittle crushing in compression 2 6 , brittle ".

fracture in tension "27'2 8 ". The low crushing strength of refractory

brick (a cellular solid) limits the loads than can be applied to it;

and the low fracture toughness of foar can cause problems when they

carry tensile loads, as they do in w h panels.

Let the modulus of rupture ot -wall material be a V.

A call wall will then fail (Fig.9) whtcfl iment acting on it exceeds:

i t3" "
f =- f (II)

The modulus of rupture of an elastic beam, loaded in bending, is the
maximnm surface stress in the beam at the instant of failure. The
maxiAmu stress is related to the moment by eqn.(1). The modulus of
rupture for a brittle solid is often close to the tensile fracture
strength. 4...

14
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As before, a force F , acting with a component normal to the wall of

length . , exerts a moment which is proportional to FZ . The stress

on the foa, as before, is proportional to F/L 2 . Combining these

results we find that collapse by crushing will occur at the stress:

Using eqn.C1), we obtain:

• -.. Cf - 4-) (12)

There are few experimental measurements of the crushing of brittle

foams. The limited data 1 8 ' 22 ) shown in Fig.10, are insufficient to

give confidence that eqn.(12) is a good description. But certain other

observations do suggest that the model has the correct physical
ingredients. First (and remarkably) the tensile and compressive

fracture stress of unnotched foams should, according to the model, be

equal (for brittle soida, the crushing strength is roughly 10 times

the tensile strength). Measurements on foamed glasses show that
this is so. And, second, an extension of the model to describe crack

.1 propagation, and to predict the fracture toughness of foams, describes

data well.

"'4' 3.5 The TensiZe Fmato e Stresses

Cmpressive fracture is insensitive to defects - such things as

flaws, cracks, or a few exceptionally large cells. But this is not so

for tensile fracture. A completely unflawed sample, it is true, should

ustain a tensile stress as high as that given by eqn. (12) before failing.

But if it contained a crack or flaw, then the stress concentration it induces ".

will fracture cell walls locally, extending the flaw and leading to sudden

fracture (Fig. 11).

When a brittle foa is loaded, the cell walls at first deform elastically.

The load is transmitted through the foam as a set of discrete forces and mom-

ents acting on cell walls. But, since the foam is linea' elastic until the

cell walls buckle, the average force and moment on a given cell wall can

be calculated from the stress field in the equivalent linear-elastic con-

tinuum. We solve the discrete problem by taking the solution of the

__ equivalent continum problem (just as we do on a smaller scale in replac-

ing the discrete bonds between atoms by a continuum) and using it to

calculate the forces and moments on the discrete cell walls.

15p.
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A crack of length a in an elastic solid, lying normal to a remote

tensile stress a, creates a singular stress field:

= a--~ (13) "-

' at a distance r from its tip. Consider the first unbroked cell wall,

which we take to be 1/2 beyond the tip; it is subjected to a force:

F a12

where a a/"

This exerts a bending moment on the walls marked A and C, and bending

moment plus a tensile stress on the wall marked B (Fig. 11). If, as

" before, the walls fail when the moment, proportional to F, exceeds the

fracture moment given by eqn. (11), then the crack advances. Assembling

these results gives:

cc t3 af
a 7 a/ V 

""where af, as before, is the modulus of rupture of the cell wall.

Using eqn. (1) we obtain:
+ a

0 =C 8 ( (14)
s /_j

where a* is the remote stress which will cause the crack to propagate.

The equation is valid only when a > Z (otherwise there is no crack).

y, The result is just what would be expected. The fracture strength

equals that for the unnotched material (eqn. 12) if the crack size is

equal to the cell size. In an open-cell foam, a wall is either broken,

or it is not. If the crack size is less than the cell size, no cell walls

are broken and the foam is undamaged. Comparing eqn. (14) with the definition

of K1C (the plane-strain toughness) for a through-crack in an infinite sheet:
.r-: KI

K IC a ia
we find K

"'-K C )c (is)1:'.af Yrr ""
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Data for crack propagation in a brittle polymeric foam are plotted

in Fig. 12. Eqn. (15), with C9 a 0.65, gives a good description of

the data. Unlike all the other properties, KiC depends on cell size.

This, too, is expected: K contains a dimension of length; the only

length which enter the problem are the cell size Z and the wall

thickness t, but that is related to Z through the relative den-
sity P/ s  (eqn. 1). The result is important whatever foams are used

s
in load-bearing applications in which tensile forces appear - as they

do in sandwich panels.

* 4. OVERALL MECHANICAL RESPONSE: DEFORMATION MAPS

When an elastomeric foam is compressed, it first deforms in a

linear-elastic way; then its cells buckle to give non-linear elasticity;

and, finally, the cells collpase completely and the stress rises

rapidly as opposing cell walls are forced together. A plastic foam

behaves in a somewhat similar way, except that, now, linear elasticity

is followed by plastic collapse, and, finally, the forcing together of

the cell walls. With brittle foam, progressive crushing can again lead

to a plateau, ending when the material is completely crushed. The

relevant formuli for open cell foams are sumarised in Table 3, together

with the equivalent results for true closed-cell foams (Fig.Ib). Most

man-made foas behave mechanically as if they had open cells, because

surface tension (or other factors) concentrates the solid into the cell

edges.

The extent of each phase of deformation depends on the relative

density. It is convenient to display this behaviour as a map with axes

compressive stress and compressive strain, showing the fields in which

each mechanism is dominant. Superimposed on the field are contours of

conan~t (initial) relative density.

4.1 Deformation Map for Elaetomeric Foans

Fig. 13 shows a map for elastomeric foams. The linear elastic

regime terminates when elastic buckling starts. The boundary of this

17
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-. field (heavy solid line) lies at the strain at which elastic collapse

Z- starts. Froms eqns.(5) and (7), this strain is:

C C - 0.05 (16) @1

At relative densities above 0.3 the cell walls become so stocky that

they can no longer buckle elastically. The curvature of the field

boundary is such as to make the linear-elastic loading line for

./ s M 0.3 tangent to the boundary.

The field of elastic buckling ends at the strain at which the

foam finally "bottoms out", or densifies, with a rapid increase of load

with displacement. This starts when the folding of the cells is so

:. great that the walls begin to touch. We find that this begins when the

foam has been compressed to a new relative density of about 0.5 (that

is, the void space occupies half the volume), and it is complete when

the foam has been compressed to a new relative density of I (no void

space left).

During elastic buckling the foam compresses axially with no lateral

spreading (v - 0). Then the relative density after a nominal

compressure strain C is just (p/p )(I/(-e)). Equating this to

0.5 gives the strain at which densification starts:

es I (17)

and equating it to I gives the strain at which densification is

complete:

C = - (18)

(where p/p , of course, is the initial relative density). Within the

elastic buckling field, the stress is related to the density by eqn.(7);

using eqn. (17) gives the equation of the field boundary (heavy solid

line) for the start of densification:

I f - 10 -)I (19) %:-?:s E ..
s

__ *Nominal compressive strain e - (ho-h)/ho  where ho  is the original

height and h the height after a compressive strain of E
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The contours are stress-strain curves for foams of relative

density vetween 10 and I . They show a linear elastic regime

(eqn.5), and a plateau corresponding to elastic buckling (eqn.7); they

start to bend upwards when densification starts (eqn.19 ) and approach

a limiting slope of E when densification is complete (eqn.18).

Within the field of elastic buckling the material can exist in two

states at almost the same stress (rather like the p - v response of

an ideal gas). It collapses in bands which broaden as strain increases:

-..- Fig.14, of cork, illustrates this.

- The figure describes the overall response of all isotropic foams

- in compression. Elastomeric foams in tension show roughly linear-

""elastic response to rupture.

4.2 PKastia Foens

Plastic foams (Fig.15), like the elastic ones, show three regions:

linear elasticity, plastic collapse, and densification - though now the

strain beyond the linear-elastic regime is not recoverable.

The boundary of the linear-elastic field (heavy line) is obtained

from eqns. (5) and (9); its equation is:

a 4O3- 1 (20)I - (0. 3 ) -
E 3

s5

In constructing this map we have taken a /E to be 0.05 Next to
y s

the linear-elastic field is the field of plastic collapse. As before,

two states of strain coexist at almost the same stress, so that

complete collapse of part of the structure can occur while the rest is

still elastic (Fig. 16); the bands of dense material broaden with

increasing strain. Densification starts (as before) when the cell

walls touch (eqn.17) and is complete when the relative density reaches

I (eqn.19). The field boundary (heavy line) defining the start of

densification is given, by the arguments leading to eqn. (19), by:

- 5- . / I (21)

Superimposed on the fields are stress-strain curves for foams of

initial relative density between 0.05 and I . They show a linear
elastic regime (eqn.5) and a plateau corresponding to plastic collapse

(eqn.9); they start to bend upward when densification starts (eqn.2 1) 0.0

and reach a limiting slope of E when densification is complete

(eqn. 18). a...
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The figure shows the overall response of isotropic, plastic foams

in compression. It is less general than the map for elastomeric foams

because it must be constructed for a particular value of a /E But
the equations show that the boundaries are not very sensitive to its
value, and, for a given material, the diagram shows the behaviour for

all densities.

4.3 Rigid Focns

Rigid foams show linear-elastic behaviour (eqn.5) to fracture.

In compression, the foam crushes at constant stress (eqn.12), and since

the crushing equation has the same form as that for plastic collapse,

the behaviour will resemble that of Fig. 17. If the foam is contained,

it will densify at the strain given approximately by eqn.(2 1), with

a /E replaced by af/E

4.4 Selection of Foans for Mechanical Design

The deformation-mode maps combine the data for a class of cellular

solid with the understanding of the mechanisms of deformation. Flexible,

or elastomeric foams, are widely used for cushions, padding and

packaging. In these applications, it is the plateau stress, a* (eqn.7)

and the extent of the plateau (given byinverting eqn20) which are 

important. All this information is sunnarised, for all flexible foams,

in a single map (Fig.13). It shows how, by judicious choice of E ,

S and P/P , a foam best suited to the application can be chosen.

Plastic or "rigid" foams are used for crash barriers and energy absorbing

systems: the aim is to absorb energy while preventing the local stresses

or loads from rising above the level which will injure or damage the -.

contents of the package. For this purpose, a long plateau at a level

a* (eqn.9) below the damage level, is required. Again the necessary
p1
information is suinarised in the diagram (Fig.15) which helps in the

rational choice of foam material and density. The crushing of brittle

foams is more of a problem than a property to be desired. The low

crushing strength of refractory bricks limits the load which they can

carry; and the crushing of bone is a problem when large compressive

loads are applied to it. The deformation-mode map for a class of
brittle cellular solids is identical to that for plastic foams (Fig.15)

with a y/E replaced by af/E , though the natural variability of

brittle solids means that the predictive precision is lower.

There is considerable scope for developing the diagrams further,
and for investigating diagrams to describe energy absorption by foams.

4 20 "

- * t' o - " b •" " ," " . % *- "*-' • " • " • *. .. . . -.." ." , " . - .- . - • . '" " - ' " ' " • "
- ,,,V', ' %- % . d% . ,- -• • . "- ', *- ' ' ... - . . -""- .. , .•, ' .- .'..J



-I -. j 'j ) -,f 7. -' .. 07 7,37777

5. CONCLUSIONS

(a) When a cellular solid with a relative density below 0.30 is

compressed, it shows a stress-strain curve with three parts: a linear-

elastic part, a long plateau, and a regime of final densification. The O

properties of an entire class of such solids can be summarised as a

deformation mode map, which shows how each of the three parts changes

as the relative density changes. The method can be applied to natural

materials, such as woods, to give a diagram which summarises the

properties of that class of material.

(b) The mechanical properties of cellular solids can be modelled with

precision. The models lead to constitutive laws (stress-strain

relations) which have been thoroughly tested in simple compression.

".. The response to multiaxial loading can be inferred, and the limited data

are consistent with the inferences.

(c) The constitutive laws establish a basis for mechanical design with

foams. The deformation-mode maps give a compact summary of properties,

4..., and give guidance in selecting foams for a specific application.
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TABLE 1: SYMBOLS AND UNITS

Density of foam (kg/m 3)

P s  Density of cell-wall material (kg/M3 )

* Young's Modulus of foam (Me)
E s  Young's Modulus of cell-wall material (MP4)

s
* Elastic collapse stress of elastomeric foam (MPa)

o; Plastic collapse stress of plastic foam (MPa)

Yield strength of cell-wall material (MPa) ,

• Strain rate (s-)

a- a Creep constants (s- , MPa, -

a; Crushing strength of brittle foam (MPa)

. Modulus of rupture of cell-wall material (MPa)
f
Fracture toughness of foam (Mea m)

t Cell wall thickness (z)

I Cell size or cell wa-l- I -nqth (m)

a a-f-lenqth of crack (m) qi.

I Second m eent of area of cell wall (m4 )

F Force acting on a cell wall ()

Fez EuleW buckling load for cell wall (N)
or
p Fully plastic moment of cell wall (Nm)
p
Ef Mnment which will just fracture cell wall ZNm)

C1 - C8  Dimensionless constants

B, - Be Dimensionless constants

-N->

%%.'
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TABLE 3: THE EQUATIONS FOR STIFFNESS AND STRENGTH OF FOAMS

*t
PROPERTY OPEN CELLS FOAMS CLOSED CELL FOAMSt  _._

E2=C ( ) 3
LINEAR ELASTICITY s s--B 2  

C2  I (eqn .5) S,.

-. ,.

el 2
p 0r*

ELASTIC COLLAPSE E- B3 (P)
E 3p -C3  0.05 (eqn.7) S s

i.." P* 2
PLASTIC COLLAPSE C (4 ) 2

C4  0.3 (eqn.9) y s

'p... ,

'.. wee0n*ute sn hm

f 2

"--

BRITTLE CRUSHING 0f s f
B

7 P

In most foams the solid is concentrated into the cell edges; then the p

open-cell formulae are appropriate. The maps shown in Figs.15 and 17
were constructed using them.

-These equations refer to true, closed-cell foams with no thickening of
the cell edges. They are derived by the method given in the text, but
using eqn.(3) in place of eqns.(1) and (2). The quantities B1  to B2

-,. are dimensionless constants.

-- V-'.i .
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(a)(b

.J.

?is. L The 3-dimansional structure of open and closed-
call foin, idealised. The cal~l walls meet so that
loads cause bending moments to be applied to the
call walls. Most fo- behae like the open-cell
foam.

0.1--

Fi. 2 The tilhe thesst= t se s-£o n urv oa fo

Vn

.e2e

Zc

,,-: ods1s <odn obeale o ~ . .

-,aaI. .n-.

" j "" T,'b

" ,3 .'-1/

-b ,"ch yie "-'.',."w

C"-" ESI-- S-AIN.

%.:.1i a nl.,
i.7

",." 7ig. 2 The typical shape of. th:e st.,e- s-.srtzai ciw"e for aL foam.
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._i

- 3 The linea-elatic defoxmation of a foam: the ce11 walls
bend so that the bending deflection S is propart.onaL
to the fore IF.
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ELASTIC COLLAPSE

.1*.'~ **=Now,'a

2.

LU

RELATIVE OENSITY P/p,

-, ... ,- .

Fi g. 6 The relative elastic collapse stress, ael/Es, plotted

open-cell polymer foams; shaded symbols represent closed-
cell pplymer foams. (The references, in order, are: 1,5;ng constants in Table 2..)
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Fig. 12. The normalised fracture toughness KIC/af ViT plotted4-
againstc/ps for crack propagation in brittle foams.
The references, in order, are: 27,28; normalising constants

in Table 2.)
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Pig. 1. A detozmation-inchanism map for eLastomaric foams,

N.- for relative densities from 0.02 to I-
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1PLASTIC FOAMS
C/E, =0.05

0-3
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6" LINEAR ..0.
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U DENSIFICATION

"" oz z~ COLLAPSE '.-;-".

z

0 0-2 0-4 06 0.8 1.0

COMPRESSIVE STRAIN 6

-S-S.. .

Fig. 1. A deformation-mechanism map for a plastic foam, for
which a " 0.05, for relative densities from
0.05 to .
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Fig. 17. A deformation-mechanism map for a rigid plastic foam,
for which a /E =0.1, for relative densities from

* 0.01 to 1.~
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PART 2 DEFORMATION MAPS FOR SOLID POLYMERS

Summary

Data for the viscoelastic modulus can be presented as diagrams
which s,-arise how the modulus depends on temperature and time. The
diagrams are useful as a way of classifying polymers by the mechanical
response and in summarising information about the mechanisms of
deformation of the polymer, and in presenting design data in an easily
accessible way.

1. INTRODUCTION

A number of deformation regimes can be identified for a given

class of polymers. A linear polymer such as PMMA shows 4 distinct

regimes, each characterised by a certain range of modulus:

(a) Glassy behaviour at T < T , characterised by a Young's modulus

of around 4 GPa

U' (b) Viscoelastic behaviour close to Tg , described by a coupling of

the W L F viscosity with a suitable elastic modulus, leading to

a time-dependent viscoelastic modulus between I and 103 MPa

(c) Rubber elasticity at T > T , caused by entanglements, following
g

Hooke's law, with a modulus around I MPa .

,d) Viscous flow at temperatures well above the glass temperature,

following a simple viscous flow law.

We have made a preliminary examination of the range of operation

of each of these mechanisms, and the models which have been developed

to describe them, with a view to assembling the information into maps.

One possible choice of axes are the viscoeLastic modulus E and

nozyalieed temperature T , where:

TOTwhere a is the stress, e is the total strain accumulated in a

time t and

T ---T/T

where T is the glass temperature (Fig.!). The temperature axis runs
- 3 4from T - 0 to T - 2 ,and the modulus axis from 10 to 10 MPa . O

This is not the only possible way of presenting the results, but it is

one that nicely displays the regimes of glassy, viscoelastic and

rubbery and viscous behaviour.
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2. THE GLASSY MODULUS -A

Amorphous polymers below their glass temperature have moduli

around 4 GN/m2 . These low values reflect the stretching of the

relatively weak van der Waals bonds which bind one chain to another, and

by rotation about certain carbon-carbon bonds in the chain backbone such

as to elongate the molecule in the direction of loading (Bowden, 1968;

Yannos and Luise, 1982). The stretching and bending of the carbon-

carbon bonds requires much higher forces, and do not contribute in an

important way to the modulus. If the internal energy of the polymer,

per unit volume, is V(E) , then Young's modulus can be calculated from

the change in V with tensile strain, e

E = d2V (1)
de

2

The intermolecular van der Waals bonds arise from dipole-dipole

induction and dispersion forces and bind one polymer chain to its

immediate neighbour. It is a short-range interaction, well modelled by

a Lennard Jones potential:

ao 12 a°

V(E) = V {(-) - 2( (2)
0 a a

a-a0
where E Substituting and differentiating, we obtain:

dV 1 13 17
=12 V - -(- }

aE0 I+FZ

14*

-dV - 12 V {13( -) }(3)

d 2  0 1+E +E

= -36 V
0

The second major contribution to the elastic deformation arises

from bond rotation. Polarised infrared spectroscopy on samples of

glassy polycarbonate (PC), annealed below the glass transition

temperature, gives direct evidence for the rotation of segments of a

chain about a carbon-carbon bond. The bond rotations are modelled by "

a 3-link deforming unit (Bowden, 1968; Yannos, 1974) or "strophon".

Rotation of the middle link causes an overall change in length. For

rotation to take place, the hindrance caused by the sidegroups must be

% overcome. This has been modelled by a two-fold symmetric potential

(Flory, 1969):

V
VW - - - cos n ( -0o)} (4)

:t ~44'"-:
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Using this idea, Yannos and Luise (1982) have calculated the contributions

of inter- and intra-molecular forces to the glassy modulus at 0 K for

six different amorphous polymers. The relative contribution of the two

deformation modes depends on the length of the strophon links: the

longer the link the more difficult it is for the bond to rotate, causing

intermolecular forces to become more dominant. This may explain the

contention between Bowden (1968), who proposes intramolecuar forces are

dominant in the modulus of a glassy polymer using polyethylene (PE) data

and Yannos (1974) who proposes intermolecular forces are dominant, based

on PC data. PC has longer strophon links than PE.

Although such models allow an estimate of the modulus at 0 K

they are insufficiently precise for our purposes. Instead, we use

values of E obtained by extrapolating measurements of E at higher

temperatures, to 0 K

Increasing the temperature has two distinct effects. First,

thermal expansion increases the molecule separation and lowers the van

der Waals restoring forces and the forces opposing rotation about carbon- Dew"
carbon bonds: this gives a slow drop in modulus, but does not introduce

a rate-dependence. Second, the thermal energy of the molecules now

makes local, thermally activated, rearrangements possible, giving extra

(time-dependent) strain, and an associated drop in modulus. The first

effect (thermal expansion) leads to a roughly linear decrease in modulus

with temperature. Yannos and Luise (1982) develop this idea, taking

account of thermal expansion: increase in temperature increases the

interchain distance, reducing the force required for intermolecular

deformation. The results, even for this one contribution, are complex,

but simplify (to within ±10%) to:

dT

E - E (I T (5)
0 T

where
Ta = .dE -- "

E dT
0

It is reasonable to assume that the rotational contribution behaves in

a similar way, so that eqn.(5) describes the effect of thermal expansion

on modulus. Lee et al. (1975) review data for moduli of glassy

polymers and conclude that they are well described by a linear

temperature dependence (eqn.5). Van Krevelen (1976) finds a better

fit to the empirical relation:
2..'

E - E /(1 + 2 T/T ) (6)
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which reduces to eqn.(5) (with a - 2) for low temperatures, but which

gives a steeper drop near T
g

" The second contribution derives from the thermally activated

motion of side groups, or of short segments of chains, past each other,

giving a little extra strain. This thermally activated relaxation is

difficult to model because, at low temperatures, only a few sites with

the lowest activation energy, Q , can move; at a higher temperature,

more sites with higher Q become mobile. This spectrum of activation

energies leads to cumbersome equations. We adopt the view that

polymers below T exhibit secondary rransitions in addition to the
g

main glass-rubber transition. Below the glass transition, there remains

some limited freedom of rotation or sliding either of short segments or

side groups. The energy involved in these transitions is lower than

that for full movement, so they occur at lower temperatures. If we

assume, for one such process, a single activation energy Q , then if

the relaxation time at a standard temperature T* is T* , then at any

other temperature T,r is given by:

Q I ! I'-- * exp (7)

R TU.

The total strain resulting from pure elastic deformation plus a visco-

elastic contribution that is due to the transition, at constant stress,

- 0 + (I - exp 1)) (8)
E E T

where E is given by eqn.(1). Thus, the relaxation can be included,

provided four pieces of information are known: the activation energy

Q , the amplitude of the relaxation ae/e and the relaxation time r*

at temperature T* . Further relaxations can be included by adding

further terms like that given above.

3. THE GLASS-RUBBER (OR VISCOUS) TRANSITION

When sufficient thermal energy is available, the van der Waals L

bonds holding the molecular chains of a polymer together start to melt.

This enables segments of the once elastically-bonded chains to undergo

large sliding movements relative to each other, introducing an element

of viscous flow into the deformation of the polymer. This appears as --o

a reduced modulus.

In an amorphous polymer, a single empirical function can describe
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the temperature dependence of the mechanical relaxation near the glass

transition. Williams, Landel and Ferry (1955) describe the ratio of

the mechanical relaxation time r , at temperature T to the value T

at a reference temperature T (with suitable choice of T ) byS S O.

log(•L.) - -C (T-Ts) (9)
, ,0g _... ) - (9)
%W.C 2  (T-T)

0where T = T +50 If T is chosen as the reference temperature,

then we find

i. log(-) log n(T) -17.44(T-T )

T (Y7 51.6 + (T-Tg) (0)
g g

or -

7.57(T-T)
' (T) - r(Tg) e 1p- .6+ (T-T) (11)

"

Note that eqn.(11) implies that both the viscosity and activation

energy for viscous flow become infinite at T - T - 51.60
g

The prediction is that all molecular motion should become "-

completely frozen at T < T - 51.6 . What happens, of course, is that
g

new mechanisms of deformation take over-.for example relaxation of the

carbomethoxy side chain at about 200C and the aliphatic ester group

at T < 150 0C for PNMA.

Using the above formulation data obtained (for example) at

different temperatures but at similar times can be shifted to coincide

on the time scale to produce a 'master curve' at a chosen temperature.

One such 'master curve' is produced by McLoughlin and Tobolsky (1952)

from stress relaxation data of PMMA (Figs.1 and 2).

Other theories have been developed to account for the temperature

. dependence of viscosity in the glass transition region. They include

barrier theories using potential wells and statitical theories

considering enthalpy (see Arridge 1975 for a short review). But the
WLF equation has been the most successful over the temperature range

T to T + 100 K . Although it was put forward as an empirical -
g g

equation, it has some physical basis. Consider the 'free volume' of a

polymer system. The free volume, Vf , can be thought of as the

difference between the total volume V and that occupied by the atoms

when densely packed, V . The total volume V is assumed to be that
0

of packed cylinders with a radius equal to the van der Waals radii

around the chains (Vo) , plus that volume associated with vibrational
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motion. The free volume (V-V) is "free" in the sense that it can
0

redistribute, continuously, due to thermal motion. It provides the

extra volume required for larger scale motion. Experimentally, the

occupied volume increases linearly with temperature whereas the total

volume shows a discontinuity at T - T (Fig.3). Doolittle (1951,
g

1952) has shown that -'

n n* exp (12) -.

V

where n* is the viscosity at some standard state and fv is the

fractional free volume (V-V/V) Assuming a linear dependence of
0

fractional free volume above T with temperature we find

f =f + a (T-T (at T T ) 
V g f (T" g)

where a is the volume expansion coefficient, from which

,,(T)) -B/fg (T-T) ()
n(Tg fg/af (T-Tg)

which is equivalent to the WLF equation with

C - B/2.3 f and C2 fg/af.

where f is the fractional free volume at T
g g

We include this information into the maps in the following way.

Consider the rheological model shown in Fig.4. It describes the bond-

stretching elasticity by the spring E, , the viscous sliding of

molecules (as given by the WLF equation) by the dashpot n(T) and the

rubbery modulus by the spring E2 . The full constitutive law for this "' .

standard linear model is

E +E (14)
2 a a 1+ - _ I +  - (- -)_(14):""."'

At constant Zoad (creep) the solution is

I E2

a{ +1 ~ ( exp - - t)}I ...1 2

Then the apparent modulus a/c , for loading time t at temperature T

AL is

C.L. E E (I)
+ t exp-
2
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This correctly goes to E for short times and low temperatures,

and to E1E2/(EI+E 2) for long times and high temperatures.

Under constant strain (stress relaxation) the result is slightly

different. We have instead
EIE 2 oS

a + I (E E2 ) -
n 12n

* 'The solution is
El E l +E2

a EI (I -I- (I - exp - - t)}

-.-

and the apparent modulus is

E I (EI+E 2)
.SEE (1 - exp - 0) (16)C• =E I (E E2 Tn

- As before, ECS E when time is short or temperature is low; and
ES - EIE (EI+E when time is long or temperature high. But the
• 2 / 2)
transition between the two is different.

We now identify E (T) with the glassy modulus, E2(T) with the

rubbery modulus, and n(T) with the WLF equation. The apparent modulus

is calculated and plotted using either eqn.(15) or eqn.(16).

4. THE RUBBERY MODULUS

Above T , amorphous polymers may exhibit a rubbery modulus
g

plateau of around I MN/m2 . This value is close to that of crosslinked

rubbers and arises in a similar way.

The molecular chains in the polymer form a network by curling and

twisting around each other forming mechanical entanglements which behave

rather like the chemical branch points of a crosslinked polymer. These

',. ~ are called entanglements and a polymer in this region of behaviour is

characterised by an average molecular weight between entanglements, Me

As the molecular weight, M , increases and so more entanglements take
* w

place, Me is reduced and a higher rubbery modulus observed. ,

To predict the modulus, the entanglement network is assumed to

act like a crosslinked network. When the polymer is strained, the

entanglement points constrain the free slippage of molecules relative

to each other, and the molecular network tends to align, reducing its

entropy. The resistance to this ordering results in the modulus of the

rubbery region.
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Standard texts (Treloar 1958, Ward 1970) give a derivation of the

rubbery modulus E for small strain. It is found that:
R

•E - 3 p RT (17)
ER (17

e

where p is the density, T the absolute temperature and R the gas

constant. This equation has been used to calculate the rubbery plateau

on the maps.

5. NEWTONIAN-VISCOUS FLOW

At high temperature (T > 1.2 Tg) the van der Waals bonds have

completely melted, and even the entanglement points slip relatively

easily. At low shear rates the polymer flows in a Newtonian viscous

manner.

Apart from the chemical dependence of viscosity, which will not

change for a specified polymer system, the viscosity is dependent on

molecular weight M and the temperature T . The dependence of the
w

viscosity on M is given by (van Krevelen, 1976):

log no log cr + 3.4 log(Mw/Mr) (if M >M )
o w cr w cr

logn log - log(M (if M <M )
- cr w w cr

The temperature dependence of viscosity is given by:

nno * exp(Q/RT) (19) .

The WLF equation can be combined with eqn.(18) to give, for low shear

rates,
17.44(T-T )

logo log cr +g3.4 log(/M ) (20)
o cr 51.6 + '(T-T )

g

Data are readily available to describe Newtonian flow, although large

variations can be found between different investigations.

5.1 Ed-tafr PMAf-
%, , .-..'

Data from van Krevelen (1976) given in terms

:'C.,of o (')/o (1.2 T ) are converted for Xw  ,00,000 using eqn.(18),
cr cr g w

4 Vcr(1.2 T ) 1.26xi0 3 Ns/m 2  and M = 30,000 also from van Krevelen.
%0cr 9 cr
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. '- It is found that the activation energies Q (in eqn.(19)) are similar,

157 kJ/mol for Diakon and 136 kJ/mol for van Krevelen's data.-, .-.- 
?

but".The value n* (eqn.(19)) is dependent on the molecular weight

but can be calculated given a value of viscosity at a known temperature

T thus: '

f (log nr (T) + 3.4 log(M/M) }/exp(Q (21)

The apparent modulus is then calculated from

TOT E t
°4.o

.- or

E , (22)t

. 6. CONSTRUCTION OF THE MAPS

The maps are constructed from eqns.(15) and (16) together with

eqn.(22). For each temperature, the modulus corresponding to a given

loading time t is calculated and plotted as shown in Fig.5.

Modifications of the equations give the modulus associated with cyclic

loading. We find that, to give a good fit to the data, the time " -."

constant in eqns.(.15) and (16):

n

and

E + E

1 2

requires modification, and we are now working on maps of doing this in

a consistent way, and conducting a detailed comparison with experimental O

data.
.4,.°.

7. CONCLUSIONS

Maps can be constructed which summarise the viscoelastic modulus

of amorphous polymers E(T,t) for a wide range of temperature T and

""'"" time t . Several separate mechanisms are involved: bond stretching,

constrained molecular sliding, rubbery behaviour, and true viscous flow.

..-. The work thus far must be thought of as a feasibility study, which

indicates that the method has potential, and is worth developing further.
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PART 3 FRACTURE MAPS FOR POLYMER-COMPoS[TES

The interaction between fracture mechanisms of a fibrous composite
are complex. The effects of certain intrinsic material parameters, like
the cohesive strength of the fibre-matrix interface or ductility of the
matrix on the micromechanisms of fracture and toughness are unclear.
One approach is to link our understanding of the failure processes with
theoretical models of fracture to predict the toughness of a composite.
However, the complex interactions between various intrinsic material
parameters and a set of equations would not clearly be seen. Instead,
we could construct maps based on these models to display information on
fracture and toughness in a useful form. The fracture map would have
two axes which are labelled using any two of the intrinsic material
parameters that describe the fibre composite (Table 1). The map would
be divided into areas or fields, each one depicting a particular
failure mechanism. The boundary between one field and another would
show a change in the dominant mechanism. Contour lines of predicted tl.
toughness could be superimposed onto the map in a manner useful for
design and material selection.

I. INTRODUCTION

Polymeric materials containing long, strong fibres, fracture by

a number of mechanisms. This section describes the principal mechanisms,

and the construction of maps which show the important composite

properties affecting these failure processes and the toughness. They

are constructed from data of the properties of the fibre, matrix and

interface, fitted to model-based equations of energy absorption which

describe the mechanisms. Where experimental data is not available, for

example, the misfit strain, e 0, between fibre and matrix, we resort to

= theory to predict e . Alternatively, where related data is available,

for example, the interlaminar shear strength, we calculate values for

the strength and toughness of a fibre-matrix adhesive bond using

fracture mechanics relationships.

The first part of this section describes certain fracture

mechanisms like fibre-matrix decohesion (debonding), fibre fracture and

fibre pull-out and shows how to predict two important failure parameters,

fibre debond length, Zd and fibre pull-out length, Z * The second

part shows how these predictions of fibre lengths can be combined with

other model-based equations to estimate the energies dissipated for a

number of fracture mechanisms. The third part shows how an estimation

of these fracture energy terms can be displayed in the form of a fracture

Throughout this section, the word 'fibre' is used to mean either an
individual fibre or a bundle of fibres.
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p map to show the dominant mechanism of toughening and the predicted

toughness f or a particular set of material properties. A case study is

carried out which shows how a map can be used to help identify the

origins of hygrothermal aging phenomena.

The selection of maps presented is incomplete. They can be

divided into three families of composite: glass fibres, carbon fibres

and Kevlar fibres in epoxy resin. However, the method of analysing the

* fracture behaviour of fibrous composites and the construction of a map

can be applied to other composite systems, short fibres in thermoplastic

matrices, for instance.

1.1 Fracture Mechanisms .-

The fracture stress of a brittle solid like glass or graphite is '

not unique. It depends, for instance, on the distribution of flaw

size in the sample. Most of the advanced fibres, carbon for instance,

show a strength dependence on radius and length. The location of a

fracture site along the length of an embedded fibre is also sensitive

to the rate at which the load builds up in the fibre. This will depend

upon the elastic properties of the fibre and matrix, modulus and

Poisson's ratio, for example, and shear stress at the fibre-matrix

interface. In a monotonic tensile test, the fibre is first likely to 'wI
debond. The stress at which it does so is affected by the strength and

toughness in shear of the fibre-matrix interface; also fibre modulus

and radius. A complicated relationship therefore exists between the

* properties of the composite and the debond stress, ad and fracture

*.stress, a; and between ad a~ and two fibre lengths, the debond
f d.,.

length and pull-out length.
Fibre debonding and fibre pull-out are the underlying failure

processes which affect the fracture toughness of the composite. It is

convenient to describe the failure processes in terms of the energy

absorbed in creating new interfacial surface and the fracture and

pulling-out of broken fibres from their matrix sockets. There are
other energy terms that contribute to toughness; the stored elastic

strain energy of the fibre, released when it snaps, matrix deformational

energy, and surface energies of the fibre and matrix. The mechanisms

The energy associated with plastic flow in the matrix and fracture
surface of the fibre and matrix is small compared to the total work
to fracture the composite and will be ignored here.
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of fibre debonding, fibre breakage and fibre pull-out are therefore

related in complicated ways.

1. 2 Fracture Toughness Maps

* . It would be useful to have some way of summarising, for a given

composite system, information about the dominance of each mechanism

and the important material properties affecting toughness. We have

done this by constructing a map. It is a diagram with axes of any two _

* .of the composite parameters (there are at least 15 such variables, see

* . Table 1). Fig.1 shows fibre strength plotted against fibre modulus for

* * glass fibres in epoxy. The map is divided into fields which show the *

.. regions of fibre strength and fibre modulus over which each of the

failure mechanisms is dominant. The letters P= pull-out energy,

EL - elastic (fibre) energy, and INT -interfacial surface energy.

The field boundaries are the loci of points at which two

mechanisms are contributing equally to the toughness of the composite.

Superimposed on the fields are contours of constant !:i;)zness (kJ/m2):

these show the predicted toughness of the composite by simming the

contributions of each mechanism. Also displayed are contours of constant

fibre debond length and fibre pull-out length (mm), two failure parameters

useful in carrying out a failure analysis of a broken specimen. In

constructing such a diagram, it is assumed that there are only two

variables, and all of the other material parameters have fixed values.

Such a map sumarises, in a simple way, both the experimental and model-

based understanding of the fracture of the composite in question.

2. DEBOND LENGTH AND PULL-OUT LENGTH EQUATIONS

In this section, we develop, with a brief explanation, the fibre
" debond length and pull-out length equations used later in the construction

of the maps. First, we select for the debonding and then the pull-out

of fibres, an equation which is based on a physically sound microscopic

model of stress build-up in the fibre. While theory gives the form of

the equation, we then resort to experimental data or simple ways of

predicting the values of the parameters which appear in it.

*'2.2 Fibre Debonding and Fibre Pu -Out

When a unidirectional fibrous composite is loaded monotonically,

the tensile stress on the fibre and the shear stress at the fibre-matrix -

interface both increase. It is likely, because of the low shear
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strength of fibre-matrix interfaces, that the bond eventually fails...

A cylindrical crack at the interface propagates along the fibre length.

The process is called "debonding". If mechanical interaction between

- a debonded fibre and matrix is still possible, by fractional forces,

for example, then load transfer to the fibre will take place. (Matrix 0
shrinkage during fabrication and cooling may be the origin of such

interaction, which sets up a radial compressive stress on the fibre.)

This produces a non-uniform stress along the length of the debonied

* region. Because of the variability of strength, the fibre fractures

at its weakest point. The eventual propagation of a macroscopic,

transverse crack in a composite therefore produces a fracture surface -
showing protruded fibres of variable length, because of the variability

of fibre strength. This process is called "pull-out" (Fig.2). ,6

-. 2.2 Prediction of Fibre Debond Length

The stress at which a fibre first debonds depends upon fibre

modulus, Ef , fracture energy of the interface, G2c (in shear), and-6

V " fibre radius, rf

d (fG2c/f)

The frictional stress between a debonded fibre and matrix socket

-. :~ is related to the compressive radial stresses produced by the matrix

during cooling and shrinkage, and the elastic properties of the fibre
* . .(2)

and matrix. The fibre stress can be described by

a(x) a ( (2)

where x is distance from the tip of an interfacial crack, a and

B are functions of the elastic constants of the fibre and the matrix

": ~ which take into account Poisson contraction of fibre under load:

e. E and 2u Em /Efrf + V
.4..'p o f/Vf 2 IfE IE (f f

Em and vm are the modulus and Poisson ratio of the matrix, vf is -

Poisson ratio of the fibre and u is the coefficient of friction at

the interface, a is proportional to the residual "misfit-strain",
p

, between fibre and matrix, where e 6/re (6 is the difference

in the radius of the matrix socket under stress-free conditions, and

its enforced radius equal to rf ). Eqn.(2) shows the rate of stress

build-up decreases as the load on the fibre increases, a can
p
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therefore be thought of as the maximum fibre stress that can be produced

by frictional loading; i.e. when Poisson contraction of the fibre equals

the residual strain in the adjacent matrix.

For a fibre that has debonded by an amount x , the fibre stress

can therefore be written as:

a(x) a a - (a -a e (3)
p p d

Under monotonic loading, the interfacial crack spreads until the
m .1

stress on the fibre reaches af (Fig.3). The fibre debond length is

therefore given by:

zd 2 Zn 1(ap - ad)/( p - af)1 /8 (4)

If ad > af , no debonding occurs; if a > a f > ad, then debonding

spreads along the entire length of fibre.

The process of 'bundle debonding' can occur in preference to k.0

'fibre debonding'. A bundle of fibres can be thought of as a 'large

fibre' having the properties of the bundle. A bundle containing ",-.'-

matrix between the fibres has properties similar to those of a uni-

directional composite with Vf = 0.80

The interface toughness parameter, G2c in eqn.(), is a linear

function of two constituent material properties:

G 2c - I (GIfG) + (a - 2rf)G 2 1/a (5)

where G and G are the critical strain energy release rates for the
1 2

. fracture of interface and pure polymer respectively. The spacing -

--_ between fibre centres, a , for a square packing array is:

a ( 1rr) /Vf (6)

Vf is the volume fraction of fibres in the bundle.

For a typical epoxy, G2 = 500 J/m2 . We use the following G

values of 50, 2 and 60 J/m2  for E-glass, Kevlar and high-strength

carbon fibres, respectively. The misfit strain, E between bundle

and matrix was claculated to be about 5% ; the bundle radius, rb , was

* of the order of 500 pm . Table 5 shows the predicted debond lengths

% based on the above values combined with eqns.(1), (4), (5) and (6).
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2.3 Prediction of Fibre PuZi-Out Length

Under monotonic loading, an embedded brittle fibre carrying a

variable load along its length will either snap at a large flaw with a

low stress or at a small flaw with a high stress. The fibre shown in

Fig.4 will actually fracture at point A , away from the surface of a

large crack, and pull-out. Its pull-out length depends upon the fibre

stress distribution and the flaw size distribution along its length.

Under stress, a , the fraction P(a) of a population of fibres

that fail, in its simplest form, is:

P) , I - e(  o  0(7)

thHowever, the probability of failure occurring in the i segment of a '.O
debonded fibre is not simply P(i). It also depends upon the

probability that a more highly stressed section has not broken before

the flaw in the ith section has caused the fibre to snap. This is given

by the sum of I - P(a.) for all j > i , i.e. all sections more highly

stressed than section i . The relative probability of fracture

occurring in section i can be given by an integral form of the

cumulative probability function:

P(a(x')) ( ! -P(a(x"))dx") dx'

F(x) = (8)

f Z d/2  
Z ./2

P(a(x')) ( I P(a(x"))dx") dx'
o fJx

The pull-out length is given by:
.4.

(1 (9 d/2) - x (9)

and F(x') is the cumulative probability of x being less than x' .

Consequently, the cumulative probability distribution of pull-out

length being less than or equal to L is:
p

I - Fl(ad/2Z - I)1 (10)

dP.

For composites, where ad > af, no fibre debonding occurs. This

is found in strongly-bonded systems like carbon fibres in epoxy.

Individual fibre pull-out is not possible but 'bundle pull-out' can

occur (we treat the bundle like a large diameter fibre where ad for

the bundle is less than ad for the fibre; and af for the bundle is

about 80% of the individual fibre). The nature of pull-out is
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.. therefore controlled by the debonding process. If separate fibres can

- debond, they will pull-out individually; glass and KevLar fibres would

S." be expected to do this. The distribution of pull-out can be determined

from a knowledge of P(o) (eqn.7) and the fibre stress distribution

(eqn.3). Evaluation of the integral (eqn.8) can be carried out using

.-. an analytical method or by a numerical technique. As a first

approximation, the average pull-out length for glass fibres and Kevlar

fibres in epoxy was found to be related to a in a simple way:

= d/6. 8  
(II)

and for pulling out a bundle of carbon fibres by:

-* = 9./35 (12)
• "4 pP- ",

3. FRACTURE ENERGY (TOUGHNESS) EQUATIONS

When a composite ply fractures, by the propagation of a crack from

a pre-existing notch or hole, for example, a sequence of energy absorbing

events occur in a region surrounding the notch-tip. For example, under

increasing load, the matrix cracks, leaving intact fibres between the

faces; the fibres debond and new interfacial surface is created; fibres

snap at weak points and stored elastic energy is dissipated; and most - -

broken fibres pull-out of matrix sockets doing work against friction at

. . the interface (Fig.5).

3.1 Interfacial Surface Energy Equation

The surface energy of an interface is small, perhaps a few Jlm 2 .

However, the area of debonded fibres and fibre bundles can be large and

a significant amount of energy may be required to produce new surface.

The contribution of the fibre (TI) and bundle _(yb) to this

toughening mechanism is additive and in proportion to the total area

of debonded interface:

G.'= (4ZdfYlVf/rf) + (4ZdbYb/rb) (13)

The effective bundle fracture energy is given by the weighted average

of Y and

"" 62
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Y I(rrfYl) + (a- 2rf)- 2Y/a (14)

Y2is the work to fracture the matrix in shear.

3.2 Fibre Eastic Energy Equation

Under monotonic load, the elastic strain energy stored in a

debonded fibre and matrix increases. When the fibre snaps, some of this

energy is released in the form of heat, acoustic energy, etc. An

estimation of the dissipated energy can be made from a knowledge of the

stored energy in the fibre before and after fracture (Fig.6). The

dissipated elastic energy is therefore the difference between the initial

"-*' and final states of stress. The elastic energy stored in the debonded

length of fibre immediately before the fibre snaps is:

• , [ -d~L/2 2/f""dV
.',U. 2 Tfr~Ia(x)I2I2Ef dx

where

a(x) a - (ap-a e-

Assuming that after the fibre fractures the stress distribution

is linear (Fig.6),

"%', a(x) a %11 -xI(a- )

then:

. Up ( a(x)2dx (7rr2 /E )(a2(a -a ) /3 )

f f ff m p d

Therefore:

G -U -Uel i f

i.e.

G0  V Vf(aF~Ld/2) - (acy d0)2e6 d 0)/28
.:.[.:. (15) .

+ 2a((a e8d/2 2/1)/5 c2 /6)1/E"
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3.3 Fibre PuLl-Out Energy Equation

*The stress to pull a fibre out of its socket embedded at a distance

x is:

a(x) -a 0I e) 0

and the work to pull-out a single fibre over a distance Z. is:

* .w 7 rr 2a(x) dx

*If the pull-out lengths have a uniform probability distribution, with

an average of Z. then the average work of pull-out can be shown to

* be 2 :

G V fak + (e8 P - )161 (16)

4. CONSTRUCTION OF THE MAPS

The failure mechanism which is dominant (meaning it contributes

most to the total work to fracture the composite) depends on the

properties of the fibre, matrix and interface. It is helpful, for a

given composite system, to show the conditions under which each mechanism

dominates and to display both the experimental data of toughness and

predictions of the model-based equations. Such a diagram or "map"

summarises, in a way which could not be achieved by examination of a

series of equations, a model-based understanding of the fracture of

composites, together with a display of experimental data. Ways of doing

this were introduced briefly in Section 1.

4.1 Method of Constr~uction

First, data for the material's properties are gathered; fibre

strength and modulus, fibre diameter, matrix strength, modulus and

toughness, interfacial shear strength and toughness, and so on. Second,

we predict the fibre (and bundle) debond length, Z.  and pull-out

lengths, Z. ; also the frictional stress distribution parameters, a -

p p -

*and 6 , from the material properties. Third, values of Zd and 2Z
d p

together with appropriate values of the material properties, are

inserted into the model-based equations to predict the energy dissipated

for each micromechanism of fracture. Fourth, a computer constructs a

map by allowing any of the material properties which affect a fracture
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4 process, to be varied in turn along the two axes of the map, keeping

all other material properties constant. The contours of constant

toughness are obtained by summing the energy-based equations to giveU
the total work to break the composite. Fifth, predictions of Zd and

I are displayed as contours of constant length. Sixth, any

experimental data plots of toughness and measurements of Z and Z

are located on the appropriate map, if required.
. Values of the parameters used for E-glass, Kevlar 49, high modulus

and high strength carbon fibres are listed in Table 2. A selection O

" of typical maps is shown in Figs.7-10.

4.2 Comparison between Maps

The predictions for typical composites, marked by a triangle, are O

summarised in Table 3. The models predict reasonable estimates of

toughness, Xd and Z , for all fibre systems despite the wide
d p

variation in fibre properties. In particular, the models predict the

toughness of carbon fibre composites to be primarily due to the debonding kO
of bundles of fibres, later pulled-out after fracture; and the toughness

of Kevlar and glass fibre composites to be due to the debonding of

individual fibres, later pulled-out aftp.r snapping. These predictions

are observed in practice. The predicted toughness of Kevlar composites "

is high, principally due to fibre pull-out. In contrast, the fracture

toughness of high modulus carbon fibre composites is low, derived from

the debonding of fibre bundles. A summary of the predictions is

displayed in Table 3, where the notation + indicates an increase in

toughness or fibre length with increasing material property.

4.3 A Case Study

Glass-epoxy laminates 10/901 were fractured in 3-point bending

after exposure to a hot, humid environment for up to 100 h . The

toughness, Gc was claculated and the fibre pull-out lengths were

measured using an optical microscope. We observed a fall in toughness

from 27 kJ/m2  to 10 kJ/m 2 , approximately. Fig.ll displays the

experimental data on a facture map. We believe that the changes in

toughness are principally due to variations in fibre strength and

fibre-matrix misfit strain, which is read from the map. This implies

that e initially drops due to moisture induced swelling of the O

matrix. Degradation of fibre strength by moisture attack causes the

large reduction in toughness with time.
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5. CONCLUSIONS

The micromechanisms of fracture and the toughness of a fibre

composite can be displayed in the form of a map. These maps show how

the fracture behaviour is affected by changes in the properties of the

composite, give guidance in designing a composite for optimum toughness,

and provide insight into the origins of environmental degradation.

The application of these maps to predict the fracture stress of

composite laminates containing holes and notches is important and needs

to be pursued further.
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TABLE 1. MATERIAL PARAMETERS WHICH APPEAR IN THE MODELS

FIBRE cf. Ef, rf in If

MATRIX cm" Em I vm

INTERFACE i .o ,.

GEOMETRY rb, Vf

(f fibre b -Obundle is matrix)

0-
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TABIE 2. TYPICAL. VALUES OF MA1'ERIA] PROPE.RTIES USED 0

CARBON
GLASS KEVL.TR

HIGH ,00.| HIGH STRENGTH

E (GP a) 3S 76 220 140

"z (GPa) S S.5 9.8 9.8 .

G 12 (GPa) 1.9 2.1 5.3 S.3

0.3 0.34 0.34 0.34

o1 (GPa) 0.80 1.34 0.89 1.24

az (GP a) Ss 29.6 60 66

r 12 (MPa) 8s 60 83 83

Fibre Radius Bunmdle Misfit Strain

rf (ur) eb

E-glass 7 5

.eviar 49 6 4.3

Carbon 4 2.9

Fibre Ty)pe G1 (J m Z)

Carbon High Modulus 24

High Strength 61

Kevlar 49 2

E-glASs SO

(Figures in brackets axe not contoured on the ma.s]

FIBRE TYE ~ ) (~DOMINANT

FIR YE pf LCpb (m db C= (ia a ECHANISM

GL.ASS 0.21 (N" 0.1) 3.8 61 INTERACE

"EVLAR 0.71 (m. 0.3) 7.2 240 PULL-OUT

HIGH MODULUS CARBON (0) 0.09 2.9 19 INTERFACE

HIGH STRENGTH CARBON (0) 0.22 7.7 67 INTERFACE
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-4.

Fibre fracture

Fig. 2. A schematic of the crack tip region in a brittle,
unidirectional fibrous composite.
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Region of maximum stress

Debonded length

-Ole

Friction hr

Few

aa

-q*FIBRE STRENGTH

FIBRE STRESS

Fig. 4. Stress profile in a debonded fibre, together with
the variation of fibre strength to show the loca- I

tion of a fibre break (point A).
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Debonded bundlescrc-an

Fig. S. Schematic of debonded and pulled-out fibres
and bundles from a Cracked matrix.
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Fig. 6. Stress profiles in an unbroken and broken fibre.
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Fig. 7. A fracture map for HM carbon/epoxy.
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